Mark Scheme 4755
January 2007
Mark Scheme 4755
January 2007

January 2007

\begin{tabular}{|c|c|c|c|}
\hline Qu \& Answer \& Mark \& Comment \\
\hline \multicolumn{4}{|l|}{Section A} \\
\hline 1 \& The statement is false. The 'if' part is true, but the 'only if' is false since \(x=-2\) also satisfies the equation. \& \begin{tabular}{l}
M1 \\
A1 \\
[2]
\end{tabular} \& 'False', with attempted justification (may be implied) Correct justification \\
\hline 2(i)

2(ii) \& $$
\begin{aligned}
& \frac{4 \pm \sqrt{16-28}}{2} \\
& =\frac{4 \pm \sqrt{12}}{2} \mathrm{j}=2 \pm \sqrt{3} \mathrm{j}
\end{aligned}
$$

 \& \begin{tabular}{l}
M1

A1

A1

A1

[4]

B 1 (ft)

B1 (ft)

[2]

 \&

Attempt to use quadratic formula or other valid method Correct

Unsimplified form. Fully simplified form.

One correct, with correct labelling Other in correct relative position s.c. give B1 if both points consistent with (i) but no/incorrect labelling
\end{tabular}

\hline 3(i) \& | $\left(\begin{array}{ll} 2 & 0 \\ 0 & \frac{1}{2} \end{array}\right)\left(\begin{array}{lll} 1 & 1 & 2 \\ 2 & 0 & 2 \end{array}\right)=\left(\begin{array}{lll} 2 & 2 & 4 \\ 1 & 0 & 1 \end{array}\right)$ |
| :--- |
| Stretch, factor 2 in x-direction, stretch factor half in y-direction. | \& B3

B1
ELSE
M1
A1
[4]
B1
B1
B1

[3] \& | Points correctly plotted Points correctly labelled |
| :--- |
| Applying matrix to points Minus 1 each error |
| 1 mark for stretch (withhold if rotation, reflection or translation mentioned incorrectly) 1 mark for each factor and direction |

\hline
\end{tabular}

4	$\begin{aligned} & \sum_{r=1}^{n} r\left(r^{2}+1\right)=\sum_{r=1}^{n} r^{3}+\sum_{r=1}^{n} r \\ & =\frac{1}{4} n^{2}(n+1)^{2}+\frac{1}{2} n(n+1) \\ & =\frac{1}{4} n(n+1)[n(n+1)+2] \\ & =\frac{1}{4} n(n+1)\left(n^{2}+n+2\right) \end{aligned}$	M1 M1 A1 M1 A1 A1 [6]	Separate into two sums (may be implied by later working) Use of standard results Correct Attempt to factorise (dependent on previous M marks) Factor of $n(n+1)$ c.a.o.
5	$\begin{aligned} & \omega=2 x+1 \Rightarrow x=\frac{\omega-1}{2} \\ & 2\left(\frac{\omega-1}{2}\right)^{3}-3\left(\frac{\omega-1}{2}\right)^{2}+\left(\frac{\omega-1}{2}\right)-4=0 \\ & \Rightarrow \frac{1}{4}\left(\omega^{3}-3 \omega^{2}+3 \omega-1\right)-\frac{3}{4}\left(\omega^{2}-2 \omega+1\right) \\ & +\frac{1}{2}(\omega-1)-4=0 \\ & \Rightarrow \omega^{3}-6 \omega^{2}+11 \omega-22=0 \end{aligned}$	M1 A1 M1 A1(ft) A1(ft) A2 [7]	Attempt to give substitution Correct Substitute into cubic Cubic term Quadratic term Minus 1 each error (missing ${ }^{\prime}=0$ ’ is an error)
5	OR $\begin{aligned} & \alpha+\beta+\gamma=\frac{3}{2} \\ & \alpha \beta+\alpha \gamma+\beta \gamma=\frac{1}{2} \\ & \alpha \beta \gamma=2 \end{aligned}$ Let new roots be k, I, m then $\begin{aligned} & k+l+m=2(\alpha+\beta+\gamma)+3=6=\frac{-B}{A} \\ & k l+k m+l m=4(\alpha \beta+\alpha \gamma+\beta \gamma)+ \\ & 4(\alpha+\beta+\gamma)+3=11=\frac{C}{A} \\ & k l m=8 \alpha \beta \gamma+4(\alpha \beta+\beta \gamma+\beta \gamma) \\ & +2(\alpha+\beta+\gamma)+1=22=\frac{-D}{A} \\ & \Rightarrow \omega^{3}-6 \omega^{2}+11 \omega-22=0 \end{aligned}$	M1 A1 M1 M1 M1 A2 [7]	Attempt to find sums and products of roots All correct Use of sum of roots Use of sum of product of roots in pairs Use of product of roots Minus 1 each error (missing ' $=0$ ' is an error)

\begin{tabular}{|c|c|c|c|}
\hline 6 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
\& n=1, \text { LHS }=\text { RHS }=1
\end{aligned}
\] \\
Assume true for \(n=k\) \\
Next term is \((k+1)^{2}\) \\
Add to both sides
\[
\begin{aligned}
\& \text { RHS }=\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2} \\
\& =\frac{1}{6}(k+1)[k(2 k+1)+6(k+1)] \\
\& =\frac{1}{6}(k+1)\left[2 k^{2}+7 k+6\right] \\
\& =\frac{1}{6}(k+1)(k+2)(2 k+3) \\
\& =\frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)
\end{aligned}
\] \\
But this is the given result with \(k+1\) replacing \(k\). Therefore if it is true for \(k\) it is true for \(k+1\). Since it is true for \(k=1\), it is true for \(k=1,2,3\) \\
and so true for all positive integers.
\end{tabular} \& B1
M1
B1
M1
M1
M1
A1
E1

E1

[8] \& | Assuming true for k. $(k+1)$ th term. |
| :--- |
| Add to both sides |
| Attempt to factorise |
| Correct brackets required - also allow correct unfactorised form Showing this is the expression with $n=k+1$ |
| Only if both previous E marks awarded |

\hline
\end{tabular}

