Mark Scheme 4755 January 2007

4755

Qu	Answer	Mark	Comment
Section	on A	ı	
1	The statement is false. The 'if' part is true, but the 'only if' is false since $x = -2$ also satisfies the equation.	M1 A1	'False', with attempted justification (may be implied) Correct justification
		[2]	
2(i)	$\frac{4 \pm \sqrt{16 - 28}}{2}$ $= \frac{4 \pm \sqrt{12}}{2} j = 2 \pm \sqrt{3} j$	M1 A1	Attempt to use quadratic formula or other valid method Correct
2(ii)	Im	A1 A1 [4]	Unsimplified form. Fully simplified form.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1(ft) B1(ft)	One correct, with correct labelling Other in correct relative position s.c. give B1 if both points consistent with (i) but no/incorrect labelling
3(i)		B3 B1	Points correctly plotted Points correctly labelled
	$\begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 4 \\ 1 & 0 & 1 \end{pmatrix}$	ELSE M1 A1 [4]	Applying matrix to points Minus 1 each error
3(ii)	Stretch, factor 2 in <i>x</i> -direction, stretch factor half in <i>y</i> -direction.	B1	1 mark for stretch (withhold if rotation, reflection or translation mentioned incorrectly)
		B1 B1 [3]	1 mark for each factor and direction

4755 Mark Scheme Jan 2007

4	$\sum_{r=1}^{n} r(r^{2}+1) = \sum_{r=1}^{n} r^{3} + \sum_{r=1}^{n} r$	M1	Separate into two sums (may be implied by later working)
	$= \frac{1}{4}n^{2}(n+1)^{2} + \frac{1}{2}n(n+1)$	M1	Use of standard results
	$\begin{vmatrix} =-n & (n+1) & +-n(n+1) \\ 4 & 2 \end{vmatrix}$	A1	Correct
	1 (1)5 (1) 27	M1	Attempt to factorise (dependent
	$= \frac{1}{4}n(n+1)[n(n+1)+2]$		on previous M marks)
	1	A1	Factor of $n(n + 1)$
	$=\frac{1}{4}n(n+1)(n^2+n+2)$	A1	c.a.o.
	1	[6]	
5	$\omega = 2x + 1 \Rightarrow x = \frac{\omega - 1}{2}$	M1	Attempt to give substitution
	2	A1	Correct
	$2\left(\frac{\omega-1}{2}\right)^3-3\left(\frac{\omega-1}{2}\right)^2+\left(\frac{\omega-1}{2}\right)-4=0$	M1	Substitute into cubic
	$\begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 4 = 0$		
	$1 \cdot 3 \cdot $	A1(ft)	Cubic term
	$\Rightarrow \frac{1}{4} \left(\omega^3 - 3\omega^2 + 3\omega - 1 \right) - \frac{3}{4} \left(\omega^2 - 2\omega + 1 \right)$	A1(ft)	Quadratic term
	$+\frac{1}{2}(\omega-1)-4=0$		
	$\Rightarrow \omega^3 - 6\omega^2 + 11\omega - 22 = 0$	A2	Minus 1 each error (missing '= 0'
			is an error)
		[7]	
5	OR		
	$\alpha + \beta + \gamma = \frac{3}{2}$	M1	Attempt to find sums and
	2	IVII	products of roots
	$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{1}{2}$		production of resta
	$\frac{\alpha \beta + \alpha \gamma + \beta \gamma - 2}{2}$	A1	All correct
	$\alpha\beta\gamma=2$		
	Let new roots be k, l, m then		
	$k+l+m=2(\alpha+\beta+\gamma)+3=6=\frac{-B}{A}$	M1	Use of sum of roots
	$kl + km + lm = 4(\alpha\beta + \alpha\gamma + \beta\gamma) +$	M1	Use of sum of product of roots in
	$4(\alpha + \beta + \gamma) + 3 = 11 = \frac{C}{A}$	1411	pairs
	71		
	$klm = 8\alpha\beta\gamma + 4(\alpha\beta + \beta\gamma + \beta\gamma)$	M1	Use of product of roots
	$+2(\alpha+\beta+\gamma)+1=22=\frac{-D}{A}$		
		A2	Minus 1 each error (missing '= 0'
1	$1 \rightarrow 6^{3} + 66^{2} + 116 + 22 = 0$		
	$\Rightarrow \omega^3 - 6\omega^2 + 11\omega - 22 = 0$	[7]	is an error)

4755 Jan 2007 Mark Scheme

6	$\sum_{n=0}^{\infty} r^{2} = \frac{1}{6} n(n+1)(2n+1)$		
	n = 1, LHS = RHS = 1 Assume true for $n = k$ Next term is $(k+1)^2$ Add to both sides	B1 M1 B1	Assuming true for k . $(k+1)$ th term.
	RHS = $\frac{1}{6}k(k+1)(2k+1)+(k+1)^2$	M1	Add to both sides
	$= \frac{1}{6}(k+1)[k(2k+1)+6(k+1)]$	M1	Attempt to factorise
	$= \frac{1}{6}(k+1)[2k^2 + 7k + 6]$ = $\frac{1}{6}(k+1)(k+2)(2k+3)$	A1	Correct brackets required – also allow correct unfactorised form
	$= \frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)$ But this is the given result with $k+1$	E1	Showing this is the expression with $n = k + 1$
	replacing k . Therefore if it is true for k it is true for $k + 1$. Since it is true for $k = 1$, it is		
	true for $k = 1, 2, 3$ and so true for all positive integers.	E1	Only if both previous E marks awarded
		[8]	Section A Total: 36

4755

Section	on B		
7(i)	$y = \frac{5}{8}$	B1 [1]	
7(ii)	x = -2, $x = 4$, $y = 0$	B1, B1 B1 [3]	
7(iii)	3 correct branches Correct, labelled asymptotes y-intercept labelled	B1 B1 B1	Ft from (ii) Ft from (i)
	$\begin{array}{c} x = -2 \\ y \\ \vdots \\ x = 4 \\ \end{array}$		
		[3]	
7(iv)	$\frac{5}{(x+2)(4-x)} = 1$ $\Rightarrow 5 = (x+2)(4-x)$ $\Rightarrow 5 = -x^2 + 2x + 8$ $\Rightarrow x^2 - 2x - 3 = 0$ $\Rightarrow (x-3)(x+1) = 0$	M1	Or evidence of other valid method
	$\Rightarrow x = 3 \text{ or } x = -1$ From graph:	A1	Both values
	x < -2 or $-1 < x < 3$ or $x > 4$	B1 B1 B1	Ft from previous A1 Penalise inclusive inequalities only once
		[5]	

4755

8(i)	$\frac{1}{m} = \frac{1}{-4+2j} = \frac{-4-2j}{(-4+2j)(-4-2j)}$	M1	Attempt to multiply top and bottom by conjugate
		A1 [2]	Or equivalent
8(ii)	$ m = \sqrt{(-4)^2 + 2^2} = \sqrt{20}$	B1	
	$\arg m = \pi - \arctan\left(\frac{1}{2}\right) = 2.68$	M1 A1	Attempt to calculate angle Accept any correct expression for angle, including 153.4 degrees, – 206 degrees and –3.61 (must be at least 3s.f.)
	So $m = \sqrt{20} \left(\cos 2.68 + j \sin 2.68\right)$	A1(ft) [4]	Also accept (r, θ) form
8(iii) (A)	$\frac{\pi}{4}$	B1 B1 [2]	Correct initial point Half-line at correct angle
8(iii) (B)	Shaded region, excluding boundaries $\frac{\pi}{4}$	B1(ft) B1(ft) B1(ft) [3]	Correct horizontal half-line from starting point Correct region indicated Boundaries excluded (accept dotted lines)

PMT

Jan 2007 **Mark Scheme**

Qu	Answer	Mark	Comment	
Section	on B (continued)	1		
9(i)	$\mathbf{M}^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -2 \\ 0 & 3 \end{pmatrix}$ $\mathbf{N}^{-1} = \frac{1}{7} \begin{pmatrix} 4 & 3 \\ -1 & 1 \end{pmatrix}$	M1 A1 A1 [3]	Dividing by determinant One for each inverse c.a.o.	
9(ii)	$\mathbf{MN} = \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 5 & -1 \\ 1 & 4 \end{pmatrix}$	M1 A1	Must multiply in correct order	
	$\left(\mathbf{MN}\right)^{-1} = \frac{1}{21} \begin{pmatrix} 4 & 1 \\ -1 & 5 \end{pmatrix}$	A1	Ft from MN	
	$\mathbf{N}^{-1}\mathbf{M}^{-1} = \frac{1}{7} \begin{pmatrix} 4 & 3 \\ -1 & 1 \end{pmatrix} \times \frac{1}{3} \begin{pmatrix} 1 & -2 \\ 0 & 3 \end{pmatrix}$	M1 A1	Multiplication in correct order Ft from (i)	
	$= \frac{1}{21} \begin{pmatrix} 4 & 1 \\ -1 & 5 \end{pmatrix}$ $= (\mathbf{M}\mathbf{N})^{-1}$	A1 [6]	Statement of equivalence to $\left(\mathbf{M}\mathbf{N}\right)^{-1}$	
9(iii)	$\Rightarrow (\mathbf{PQ})^{-1} \mathbf{PQQ}^{-1} = \mathbf{IQ}^{-1}$ $\Rightarrow (\mathbf{PQ})^{-1} \mathbf{PI} = \mathbf{Q}^{-1}$	M1		
	$\Rightarrow (\mathbf{PQ})^{-1}\mathbf{P} = \mathbf{Q}^{-1}$	M1	$\mathbf{Q}\mathbf{Q}^{-1} = \mathbf{I}$	
	$\Rightarrow (\mathbf{PQ})^{-1}\mathbf{PP}^{-1} = \mathbf{Q}^{-1}\mathbf{P}^{-1}$	M1	Correctly eliminate I from LHS Post-multiply both sides by P ⁻¹ at	
			an appropriate point	
	$\Rightarrow (\mathbf{PQ})^{-1} \mathbf{I} = \mathbf{Q}^{-1} \mathbf{P}^{-1}$ $\Rightarrow (\mathbf{PQ})^{-1} = \mathbf{Q}^{-1} \mathbf{P}^{-1}$	A1	Correct and complete argument	
		[4]	Correct and complete argument	
	Section B Total: 36			
Total: 72				